Latest preprints
Rathod, S. S., Ceccarelli, F., Holden, S. B., Liò, P., Zhang, X., Tanevski, J.
ContextFlow: Context-Aware Flow Matching For Trajectory Inference From Spatial Omics Data.
arXiv:2510.02952 (2025).
Vulliard, L., Glauner, T., Truxa, S., Cetin, M., Wu, Y.-L., et al.
Robust multicellular programs dissect the complex tumor microenvironment and track disease progression in colorectal adenocarcinomas.
arXiv:2510.05083 (2025).
Lake, B. B., Melo Ferreira, R., Hansen, J., Menon, R., Basta, J., et al.
Cellular and Spatial Drivers of Unresolved Injury and Functional Decline in the Human Kidney.
bioRxiv:2025.09.26.678707 (2025).
Schäfer, P. S. L., Zimmermann, L., Burmedi, P. L., Walfisch, A., Goldenberg, N., et al.
ParTIpy: A Scalable Framework for Archetypal Analysis and Pareto Task Inference.
bioRxiv:2025.09.08.674797 (2025).
Ceccarelli, F., Lio, P., Saez-Rodriguez, J., Holden, S. B., Tanevski, J.
Topography Aware Optimal Transport for Alignment of Spatial Omics Data.
bioRxiv:2025.04.15.648894 (2025).
Schiller, C., Ibarra-Arellano, M. A., Bestak, K., Tanevski, J., Schapiro, D.
Comparison and Optimization of Cellular Neighbor Preference Methods for Quantitative Tissue Analysis.
bioRxiv:2025.03.31.646289 (2025).
Publications
Wünnemann, F., Sicklinger, F., Bestak, K., Nimo, J., Thiemann, T., Amrute, J. M., et al.
Spatial multiomics of acute myocardial infarction reveals immune cell infiltration through the endocardium.
Nature Cardiovascular Research (2025).
Ritz, T., Tanevski, J., Baues, J., Loosen, S. H., Luedde, T., et al.
Proteomic subtyping highlights tumor heterogeneity of human HCC.
Virchows Archiv (2025).
Kuehl, M., Okabayashi, Y, Wong, M. N., Gernhold, L, Gut, G., et al.
Pathology-oriented multiplexing enables integrative disease mapping.
Nature (2025).
Tanevski, J., Vuillard, L., Ibarra-Arellano, M. A., Schapiro, D., Hartmann, F. J., Saez-Rodriguez, J.
Learning tissue representation by identification of persistent local patterns in spatial omics data.
Nature Communications:16, 4071 (2025).
Rahimi, A., Vale-Silva, L.A., Faelth Savitski, M., Tanevski, J., Saez-Rodriguez, J.
DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics.
Nature Communications 15, 4994 (2024).
Dimitrov, D., Schäfer, P.S.L., Farr, E., et al.
LIANA+ provides an all-in-one framework for cell–cell communication inference.
Nature Cell Biology 26, 1613–1622 (2024).
Laury, A. R., Zheng, S., Aho, N., et al.
Opening the black box: spatial transcriptomics and the relevance of AI-detected prognostic regions in high grade serous carcinoma.
Modern Pathology 100508 (2024).
Paton, V., Gabor, A., Ramirez Flores, R.O., et al.
Assessing the impact of transcriptomics data analysis pipelines on downstream functional enrichment results.
Nucleic Acids Research 52(14) 8100-8111 (2024).
Heumos, L., Schaar, A.C., Lance, C., et al.
Best practices for single-cell analysis across modalities.
Nature Reviews Genetics 24, 550–572 (2023).
Tanevski, J., Ramirez Flores, R.O., Gabor, A., et al.
Explainable multiview framework for dissecting spatial relationships from highly multiplexed data.
Genome Biology 23, 97 (2022).
Kuppe, C., Ramirez Flores, R.O., Li, Z., et al.
Spatial multi-omic map of human myocardial infarction.
Nature 608, 766–777 (2022).
Gabor, A., Tognetti, M., Driessen, A., Tanevski, J., et al.
Cell‐to‐cell and type‐to‐type heterogeneity of signaling networks: insights from the crowd.
Molecular Systems Biology, 17(10), e10402 (2021).
Schwabenland, M., Salié, H., Tanevski, J., et al.
Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions.
Immunity 54(70), 1594-1610.e11 (2021)
Holland, C.H., Tanevski, J., Perales-Patón, J., et al.
Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data.
Genome Biology 21, 36 (2020).
Tanevski, J., Nguyen, T., Truong, B., et al.
Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data.
Life Science Alliance 3 (11), e202000867 (2020).
Tanevski, J., Todorovski, L., Džeroski, S.
Combinatorial search for selecting the structure of models of dynamical systems with equation discovery.
Engineering Applications of Artificial Intelligence 89, 103423 (2020).
Tanevski, J., Todorovski, L., Džeroski, S.
Process-based design of dynamical biological systems.
Scientific Reports 6, 34107 (2016).
Tanevski, J., Todorovski, L., Džeroski, S.
Learning stochastic process-based models of dynamical systems from knowledge and data.
BMC Systems Biology 10, 30 (2016).